
LBNL-53368 Abs. July 2003

Interoperability of Visualization Software and Data Models is Not an
Achievable Goal

E. Wes Bethel

ewbethel@lbl.gov
Lawrence Berkeley National Laboratory

1. PANEL DESCRIPTION
The scientific visualization community faces a crisis: there
exist many individual tools that can be used to perform
visualization, but there is little, if any, hope of being able to
use tools from different sources as part of a single
application. As a result, our community is fractured, and
can be characterized as “islands of capability.” The purpose
of this panel is to probe the issues that prevent such
interoperability, and engage in frank discussion about how
our community can rectify these maladies. The issues to be
discussed include but are not limited to: (1) lack of
“standards” for data storage and modelling of N-
dimensional scientific data, similar to those used for raster
image files; (2) lack of “standard” interfaces for common
visualization tools; (3) the visualization needs of the
computational science research community, who are the
primary consumers of technology from the visualization
community; (4) lack of organization within our community
to push for definition and adoption of such “standards;” (5)
lack of organization within our community to serve as a
“broker” and “promoter” for tools that might conform to
even the weakest of standards. The panelist lineup
represents a diverse cross-section of expertise and opinions
about the panel topic. The panelists themselves are in
disagreement about the severity of the problem, and
potential solutions. The topic of this panel is highly
germane to future growth of visualization as a science, and
promises to be highly engaging for panelists and audience
members alike.

2. PANELISTS

2.1 Greg Abram, IBM T.J. Watson
Research Center
To my mind, much of the failure to develop and adopt
broad-based standardization within and between the
visualization and computational science communities
reduces to the short-sighted belief that the performance of a
solution to any particular problem - or, in fact, the
performance of any particular component of a particular
problem – outweighs the larger goals of maximizing cost-
effectiveness and minimizing total time-to-solution across a
wide range of problems. Several things foster this attitude.
There is the fun and ego-gratification of delivering a
heroically built piece of code. There is the performance
gain to be had by taking advantage of unique characteristics
of a particular problem to provide a tailored, super-tuned
piece of code that performs ideally on that problem. There

is the need to justify the purchase of hardware with tangible
results shown by anecdotes of larger problems being solved
in less time. What there isn’t is a the recognition of the real
problem - maximizing cost-effectiveness and minimizing
time-to-solution over all of the tasks that confront an
institution, accompanied by anecdotes of problems that
arise and are solved satisfactorily, quickly and
inexpensively. The problem is compounded once
institutional lines are crossed. Proprietary goals make
concessions to standardization unpalatable. A lack of
concession leads to attempts at standardization that are all
things to all people, and are useful to none. Users and
management are unwilling to accept costs and
inconveniences that they might attribute to being of more
benefit to a competitor than themselves.

We attempted to attack this problem when we first
developed OpenDX. We saw a visualization community
that relied on either domain-specific closed applications, or
components tied very closely to specific representations,
which were often built for very specific purposes and then
tossed into a toolkit. We felt that we could develop a data
model that would provide effective representation across a
very wide range of applications and then a set of
visualization components that operated on any data
represented in the model. Since objects in the model
provided the ability to describe their representation, we
could build high-level components that examine their input
and call low-level representation-specific algorithms if they
existed, and or use more general-purpose algorithms
otherwise. We could “hammer on the highest nail,”
providing customized algorithms where they proved most
valuable, and not waste time developing tuned algorithms
for less important cases. We could provide users the ability
to create the components that they needed and leverage our
vendor-supplied code wherever it would suffice. Finally,
we noted the ease-of-use that a self-describing data model
would provide, since users building high-level visualization
applications could concern themselves with function
without regard for representation, up to the point that they
needed to address performance issues.

I always hoped that this would serve a larger purpose as
well - to subsume both the visualization process and the
computation that creates the data for visualization into a
single super-application. I believed that the convenience the
infrastructure of OpenDX - notably the data model, but also
visual programming interface and GUI-builder capabilities,
would entice people to incorporate computational science

LBNL-53368 Abs. July 2003

components into OpenDX, thereby building computational
steering and tracking into their application. Alas, this has
rarely been the case.

Greg Abram received his PhD at the University of North
Carolina at Chapel Hill in 1986. He has been a Research
Staff Member at the IBM T.J. Watson Research Center
since 1990, working on many aspects of scientific
visualization as well as participating in the architecture and
implementation of OpenDX.

2.2 John Shalf, Lawrence Berkeley
National Laboratory
Visualization systems will become an essential part of the
emerging fabric of Grid services. While there have been
many tantalizing demonstrations of the capabilities that this
new “Grid” frontier will enable, there is a huge gap
between the demonstrations of Grid visualization
applications and solutions that could reasonably be
deployed in a production environment.

The underlying Grid infrastructure offers a considerable
number of challenges to application programmers before it
can become a stable substrate for interactive visualization
applications. This includes some work that is the traditional
domain of visualization researchers like specialized latency
tolerant or highly scalable parallel visualization algorithms.
However, there are considerably more areas of
development that require advances in security models,
performance modelling and prediction, dynamic application
redeployment, distributed data management, and network
protocols that are not the typical domain of visualization
researchers. These problems are very complex and will
require considerable effort just to build the Grid
infrastructure up to a level that can stably support
production quality applications.

Unless we make a concerted effort to address the
deficiencies in the current Grid and bring it up to a level of
abstraction that is sensible for visualization application
needs, there will be little progress in this area. However,
given the current balkanization of visualization systems and
capabilities, every application developer in this community
will need to solve the same problems over and over again,
thereby continuing this depressing of lack of forward
progress in this community. We have failed to rise to the
challenge of large data visualization on commodity MPPs
in a manner that is widely deployed in production
environments. Will we continue with this track record
through the Grid revolution as well?

The problems inherent in the Grid are far too complex and
varied for us to provide an even minimally useful solution
unless we are able to find a way to combine our efforts.
The only path to sharing this difficult job of Grid
infrastructure is by coming back to the table to address the
very difficult problems of interoperability between different

visualization frameworks and tool environments that we
have abandoned so many times in the past.

John Shalf is a staff scientist at Lawrence Berkeley
National Laboratory. He is involved in projects that cover
visualization of AMR data, distributed/remote
visualization, Grid portal technology, high performance
networking, and computer architecture. He has also been a
visiting researcher at the at the Albert Einstein
Institute/Max Planck Institute in Potsdam Germany and is a
member of the Technical Advisory Board for the EU
GridLab project that seeks to create application-oriented
APIs and frameworks for Grid computing.

2.3 Randy Frank, Lawrence Livermore
National Laboratory
Our ability to generate large datasets is rapidly outpacing
our ability to manipulate and visualize them. The move to
distributed visualization systems to handle these datasets
has been slow and strewn with potholes. Moreover, recent
leaps in workstation class PC performance has allowed
commercial developers to largely avoid dealing with this
problem, leaving many of us to roll our own tools from the
myriad of available components. Indeed, research into
advanced mechanisms for handling these datasets has
yielded a number of excellent solutions to these problems,
yet seldom do these techniques make their way into
production tools for end users. Funding mechanisms and
other forces have pushed the community toward large,
monolithic implementations that are rarely nimble enough
to leverage the latest research results. The complexity of
such codes prohibits their adaptation to and timely delivery
of vertical visualization solutions that our end users
request. A new approach to tool development is needed.
There are many great system components available, yet you
rarely see them used together to solve a problem. Why?

An approach is needed that encourages independent groups
to work together on system components with focused,
intelligently designed interfaces that do not require large
infrastructure changes to use. Most distributed visualization
tools consist of a few basic components that in many cases
know nothing about the actual data they are handling.
Loosely coupled lightweight components with a relatively
narrow focus may be the key to our ability to rapidly
prototype and deliver visualization solutions, which
leverage the results of novel approaches, our end users
desire.

Randall Frank currently serves as the LLNL ASCI VIEWS
Visualization Project Lead. He is involved in a number
scalable rendering and visualization research projects,
targeting interactive visualization of terascale data and
distributed clusters. These projects include Chromium,
DMX and the TeraScale Browser. Prior to joining LLNL,
he worked at Research Systems as a Systems Architect on

LBNL-53368 Abs. July 2003

their IDL product. He has received BS and MS degrees in
Biomedical Engineering from the University of Iowa.

2.4 Jim Ahrens, Los Alamos National
Laboratory
I do not believe visualization tool interoperability is a crisis
because solutions are available now or will be in the near
future. Tools can work together by 1) sharing files and 2)
sharing algorithms/user interfaces. Sharing files is fairly
simple, but typically hindered by a lack of a common data
format. There are current projects working to solve the
common data format problem including HDF and the Los
Alamos, Livermore and Sandia Scientific Data
Management project. In the worse case, a visualization
developer can translate from one tool’s data format to the
other. Sharing algorithms and user interfaces can be
achieved by taking code from one tool and porting it for
use in another tool. Algorithms can also be shared by using
a common architecture. DOE’s Common Component
Architecture (CCA) project is currently solving this
problem. A key question to address is: What is the
definition of efficient/effective tool interoperability? A
related question is: Who is the interoperability
efficient/effective for? Visualization developers or users? I
believe the next step for the visualization developer
community is to focus on real-world user tool
interoperability problems. I suspect many interoperability
problems can be solved quickly and easily using the
techniques described above.

James Ahrens received a Ph.D. in computer science from
the University of Washington in 1996. After graduation he
became a staff member at Los Alamos, where he is
currently employed. His research interests include scientific
visualization and parallel/distributed systems. He has
written book chapters, journal and conference papers on
these topics. He is leading an open-source software effort to
extend the Visualization Toolkit (VTK) and create an end-
user tool (ParaView) to visualize extremely large datasets.

2.5 Steve Parker, University of Utah
Visualization systems were one of the earliest adopters of
component-based architectures. Numerous systems have
been developed over the years that have successfully
employed these architectures to form powerful
visualization systems, including AVS, IBM Data Explorer,
IRIS Explorer, Khoros, Vtk, and SCIRun. However,
visualization research is seldom able to take advantage of
these environments due to various constraints, both
technical and otherwise.

I implore the visualization community to work together to
create a standard component-based architecture that will
fulfill the needs of visualization researchers and

practitioners alike. This system should have the following
attributes:
• Based on open standards, including the underlying

component technology and the visualization standards
themselves.

• Based on a flexible execution model to facilitate a
broad range of visualization algorithms.

• Addresses parallelism, both in terms of parallel data
and parallel visualization tools.

• Facilitates both flexibility and performance on a broad
range of scientific data.

• Facilitates incremental adoption, such that
communities can utilize pieces of the standard as they
progress towards full adoption.

• Is sufficiently efficient and flexible to work with large-
scale visualization tasks.

Many in the community have pieces of this larger puzzle,
but putting them all together in an efficient manner is a
non-trivial task. Nevertheless, it is an important
undertaking that will help to bring to a broader community
the myriad of techniques developed by visualization
researchers.

Steven Parker is a Research Assistant Professor in the
Department of Computer Science at the University of Utah.
His research focuses on problem solving environments,
which tie together scientific computing, scientific
visualization, and computer graphics. He is the principal
architect of the SCIRun Software System, which formed
the core of his Ph.D. dissertation, and is currently the chief
architect of Uintah, a software system designed to simulate
accidental fires and explosions using thousands of
processors. He was a recipient of the Computational
Science Graduate Fellowship from the Department of
Energy. He received a B.S. in Electrical Engineering from
the University of Oklahoma in 1992, and a Ph.D. from the
University Utah in 1999.

2.6 Nagiza Samatova, Oak Ridge National
Laboratory
The concept of a “plug-in” is not new. Plug-ins are code
modules that literally plug into a computing framework to
add capabilities that previously did not exist. Familiar
examples include web browser plug-ins for playing live
audio files, displaying PDF files, and much more. There is
no need for “porting user interfaces” of these numerous
applications for use in a Web browser, especially when a
typical interface code is tens/hundreds of thousands lines of
code. Data format translation – from one format to another
– is not practical for terabyte data sets generated by
scientific applications – simply use an appropriate plug-in.

We wish life were that simple so that we could take a
visualization package(s) and plug it into our data
management and data analysis infrastructure, called
ASPECT, designed with some special end-to-end and QoS
performance requirements. There exist many successful

LBNL-53368 Abs. July 2003

visualization applications (e.g., OpenDX, ParaView,
Terascale Browser) with a variety of complimentary
capabilities to choose from. While it is possible to use any
one in isolation, using them in a larger context is the
ultimate goal. However, incorporating even a single one of
them within another application or framework is very time
consuming and tedious. Struggling with monolithic
frameworks and tightly integrated user interface, system-
specific event loops to handle the events for active user
interaction, lack of support of various data formats (e.g.,
HDF, netCDF), or inability to mix and match packages by
choosing an algorithm from one that the other doesn’t
implement are just a few of our frustrations that still make
us believe that interoperability of visualization software is
still fantasy.

Packages should be providers of visualization capabilities,
rather than posing barriers to use by scientists or extension
by developers. The idea of integration with other tools,
frameworks and applications should be present from the
start of development, as should the question “what kind of
use breaks this package?” But until the mentality of
visualization and data management architectures change in
a fundamental way, the visualization software “plug-in”
concept will remain an elusive desire, rather than a reality.

Nagiza Samatova is a staff scientist at the Oak Ridge
National Laboratory. Her research focuses on advanced
algorithms for large-scale, distributed and streamline data
mining. She is the Project Lead of the ASPECT system
developed under the DOE SciDAC Scientific Data
Management (SDM) center. She received a Ph.D. in
mathematics from Russian Academy of Sciences, Moscow,
in 1993 and M.S. in computer science from the University
of Tennessee, Knoxville, in 1998.

2.7 Mark Miller, Lawrence Livermore
National Laboratory
Interoperability at the level of data models is not only
feasible, but it has been achieved on the small and medium
scale. Furthermore, we’re making slow and steady progress
towards large-scale integration. The key is DATA
ABSTRACTION!

In the early days of scientific computing, roughly 1950 -
1980, each big simulation code effort included sub-efforts
to develop supporting tools for visualization, etc.
Developers working in a particular stovepipe designed
every piece of software they wrote, simulation code and
visualization tools alike, to conform to a common
representation for the data. All software in a particular
stovepipe was really just one monolithic application held
together by a common, binary or ASCII file format. In
short, there was no integration.

Between 1980 and 2000 an important innovation emerged,
the MENU based I/O library. In fact, two variants emerged
each working at a slightly different level of abstraction.

One offered a menu of computer science (CS) objects such
as arrays, structs and linked lists. The other offered a menu
of computational modeling (CM) objects such as structured
and unstructured-zoo meshes and zone- and node-centered
variables. Examples of the former are CDF and HDF (early
80's). Examples of the latter are EXODUS (1982), Silo
(1988) and CDMLib (1998). On the one hand, there are
numerous examples of menu-based I/O libraries being used
successfully to integrate on the small and medium scale. On
the other hand, both classes of menu-based libraries have
weaknesses prohibiting integration on the large scale.

By 2000, a new breed of I/O library began to emerge. It is
based on modeling the abstract mathematical/physical
continuum from which scientific software is ultimately
derived. Examples are the Sets and Fields (SAF) and Sheaf
scientific data modeling systems. These technologies
enable developers to model scientific data in terms of
WHAT it represents in a mathematical or physical sense
independent of HOW it is represented in an implementation
sense. These technologies promise take us into the large
scale of integration. Nonetheless, this leap in integration
does come at a price. Visualization tool developers must
embrace this abstract mathematical world and express their
software components in its terms.

Mark C. Miller received his Ph.D. in Electrical Engineering
from University of California, Davis where he developed
multi-resolution techniques for interactive, terascale terrain
visualization. For the past eight years, he has worked on
scalable, parallel scientific database technology supporting
simulation codes in the Accelerated Strategic Computing
Initiative (ASCI).

2.8 Wes Bethel, Lawrence Berkeley
National Laboratory
Bethel is a Staff Scientist at Lawrence Berkeley National
Laboratory, where he is a Group Leader for the
Visualization Group. Bethel’s background includes design
and implementation of several generations of visualization,
virtual reality, and graphics rendering systems and tools.
Recent examples include the Visapult application, which
was used to win the SC Bandwidth Challenge for three
years in a row and OpenRM Scene Graph, an Open Source
scene graph API tailored for high performance applications.
Bethel’s role in the panel will be to provide an historical
perspective during introductory remarks, to ignite spirited
discussion, and to serve as moderator.

3. ACKNOWLEDGEMENT
This work was supported by the Office of Science,
Computational Technology Research, U. S. Department of
Energy under Contract No. DE-AC03-76SF00098.

	PANEL DESCRIPTION
	PANELISTS
	Greg Abram, IBM T.J. Watson Research Center
	John Shalf, Lawrence Berkeley National Laboratory
	Randy Frank, Lawrence Livermore National Laboratory
	Jim Ahrens, Los Alamos National Laboratory
	Steve Parker, University of Utah
	Nagiza Samatova, Oak Ridge National Laboratory
	Mark Miller, Lawrence Livermore National Laboratory
	Wes Bethel, Lawrence Berkeley National Laboratory

	ACKNOWLEDGEMENT

